Stability of bumps in piecewise smooth neural fields with nonlinear adaptation
نویسندگان
چکیده
We study the linear stability of stationary bumps in piecewise smooth neural fields with local negative feedback in the form of synaptic depression or spike frequency adaptation. The continuum dynamics is described in terms of a nonlocal integrodifferential equation, in which the integral kernel represents the spatial distribution of synapticweights between populations of neuronswhosemean firing rate is taken to be a Heaviside function of local activity. Discontinuities in the adaptation variable associatedwith a bump solution means that bump stability cannot be analyzed by constructing the Evans function for a network with a sigmoidal gain function and then taking the high-gain limit. In the case of synaptic depression, we show that linear stability can be formulated in terms of solutions to a system of pseudo-linear equations. We thus establish that sufficiently strong synaptic depression can destabilize a bump that is stable in the absence of depression. These instabilities are dominated by shift perturbations that evolve into traveling pulses. In the case of spike frequency adaptation,we show that for awide class of perturbations the activity and adaptation variables decouple in the linear regime, thus allowing us to explicitly determine stability in terms of the spectrum of a smooth linear operator. We find that bumps are always unstable with respect to this class of perturbations, and destabilization of a bump can result in either a traveling pulse or a spatially localized breather. © 2010 Elsevier B.V. All rights reserved.
منابع مشابه
Two-Dimensional Bumps in Piecewise Smooth Neural Fields with Synaptic Depression
We analyze radially symmetric bumps in a two-dimensional piecewise-smooth neural field model with synaptic depression. The continuum dynamics is described in terms of a nonlocal integrodifferential equation, in which the integral kernel represents the spatial distribution of synaptic weights between populations of neurons whose mean firing rate is taken to be a Heaviside function of local activ...
متن کاملSpatially Structured Waves and Oscillations in Neuronal Networks with Synaptic Depression and Adaptation
We analyze the spatiotemporal dynamics of systems of nonlocal integro–differential equations, which all represent neuronal networks with synaptic depression and spike frequency adaptation. These networks support a wide range of spatially structured waves, pulses, and oscillations, which are suggestive of phenomena seen in cortical slice experiments and in vivo. In a one–dimensional network with...
متن کاملPresentation of quasi-linear piecewise selected models simultaneously with designing of bump-less optimal robust controller for nonlinear vibration control of composite plates
The idea of using quasi-linear piecewise models has been established on the decomposition of complicated nonlinear systems, simultaneously designing with local controllers. Since the proper performance and the final system close loop stability are vital in multi-model controllers designing, the main problem in multi-model controllers is the number of the local models and their position not payi...
متن کاملEffects of synaptic depression and adaptation on spatiotemporal dynamics of an excitatory neuronal network
We analyze the spatiotemporal dynamics of a system of integro-differential equations that describes a one-dimensional excitatory neuronal network with synaptic depression and spike frequency adaptation. Physiologically suggestive forms are used for both types of negative feedback. We also consider the effects of employing two different types of firing rate function, a Heaviside step function an...
متن کاملStability investigation of hydraulic interconnected suspension system of a vehicle with a quaternion neural network controller
Using hydraulic interconnected suspension (HIS) system to improve the stability of the vehicles is a matter of recent interest of many scholars. In this paper, application of this kind of suspension system and its impact on the stability of the vehicle are studied. The governing dynamic relations of the system are presented, using free body diagram, Newton-Euler motion equations, and relations ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010